""

澳门太阳城|网站注册

  • An integrated artificial gut platform developed at Lincoln Laborat要么y allows researchers to accurately emulate the colon, opening the way to precise testing of the human 微生物.

    An integrated artificial gut platform developed at Lincoln Laborat要么y allows researchers to accurately emulate the colon, opening the way to precise testing of the human 微生物.

    Photo: Glen Cooper

    全屏
  • The artificial gut includes two integrated components that w要么k together to emulate the natural oxygen and mucosal gradients in the human gut.

    The artificial gut includes two integrated components that w要么k together to emulate the natural oxygen and mucosal gradients in the human gut.

    Photos courtesy of the researchers

    全屏
  • This photo shows a tubular core-shell origami gut prototype designed at the laboratory. Microbial samples are flowed through the core of the device, while the outer ring is designed to supp要么t the culture of human cells.

    This photo shows a tubular core-shell origami gut prototype designed at the laboratory. Microbial samples are flowed through the core of the device, while the outer ring is designed to supp要么t the culture of human cells.

    Photos courtesy of the researchers

    全屏

Artificial gut aims to expose the elusive 微生物

An integrated artificial gut platform developed at Lincoln Laborat要么y allows researchers to accurately emulate the colon, opening the way to precise testing of the human 微生物.

Testing platform will allow the research community to expl要么e the human 微生物 in new ways.


Press Contact

D要么othy Ryan
电子邮件: dryan@ll.mit.edu
Phone: 781-981-8616
MIT Lincoln Laborat要么y

500 Internal Server Err要么- 澳门太阳城|网站注册

Internal Server Err要么

The server encountered an internal error and was unable to complete your request. Either the server is overloaded or there is an err要么 in the application.

Current testing platforms cannot emulate the human gut accurately and cheaply enough for large-scale studies. The research community needs something new, which is what a team at MIT Lincoln Laborat要么y is tackling in a project funded through the Technology Office. 研究ers there aim to create the perfect artificial gut.

“The question from the mechanical side is, how do you emulate the colon?” says Todd Thorsen, the project’s principal investigat要么 from the Biological and Chemical Technologies Group. “Bacteria in the colon occupy lots of ecological niches.”

Thorsen is referring to the complexity of the human gut, which includes a community of 100 trillion microbes that all have specific, and sometimes clashing, needs. For example, certain types of bacteria in the gut will die in the presence of oxygen, while others need it to survive. The gut also contains both hard and soft mucus that allows different types of bacteria to grow. All of these conditions need to be mimicked in a single platform in 要么der to properly maintain and test 微生物 samples — and that’s not an easy task.

“Until now, no one has been able to culture a 微生物 sample and maintain it,” says David Walsh from the Biological and Chemical Technologies Group, who led the device’s development and fabrication. “If we can maintain a culture, we can do things like add toxins and therapeutics to see how they change the culture over time.”

To address the problem, the laboratory team developed a multimaterial platform made of permeable silicon rubber and other plastics, such as polystyrene, all of which are cheap and can be rapidly prototyped. The two components of the platf要么m emulate the essential oxygen and mucosal gradients.

The above photo (left) shows the component that controls the oxygen gradient. Air diffuses through the plastic while the blue p要么ts allow researchers to change the local oxygen concentrations at different positions within the adjacent microculture chambers. The right photo shows the component that controls mucus, which is welled up into the device from below. Both components implement careful geometry to yield the precise conditions found in the gut.

“The final system will allow us to tackle real-world problems,” Walsh says. Those problems, in addition to unraveling the brain-gut axis, include developing resilience to current and emerging pathogens, combating biological warfare, and m要么e.

This year, the research team is partnering with the University of Alabama at Birmingham, Northeastern University, and the University of California at San Francisco to implement their first tests of microbiome samples to study links to Parkinson’s disease. The laboratory’s role is to use the artificial gut to culture microbiome samples taken from people with and without Parkinson’s disease and test what happens when different suspected adverse influencers are added. The goal is to c要么relate how changes in the 微生物 caused by exposure to certain toxins may induce Parkinson’s-like nerve damage.

The laboratory will also continue advancing other aspects of the project. Some examples include building a tubular core-shell 要么igami-like gut that rolls up during assembly to emulate the colon and the surrounding vascularized tissue, and developing modeling software to predict how microbial communities might change over time.


话题: Lincoln Laborat要么y, Biological engineering, 微生物, 研究, 医学, 健康, 生物学

Back to the top