""

澳门太阳城网站-最新注册

  • 米尔恰·丁加

    米尔恰·丁加

    照片:布莱斯vickmark

    全屏

米尔恰·丁加: Searching for materials that collect and st要么e energy

米尔恰·丁加

A lifelong fascination with chemistry has led to research on exotic new materials with environmental advantages.


记者联系

卡尔·莉迪·让·巴蒂斯特
电子邮件: kjeanbap@mit.edu
电话:(617)253-1682
澳门太阳城最新网站新闻

媒体资源

2个图像下载

媒体访问

Media can only be downloaded from the desktop version of this website.

Growing up in Romania, 米尔恰·丁加 became fascinated with chemistry at an early age, and by the time he was in high school he was a regular participant — and prizewinner — in chemistry Olympiads there. Those early activities helped him earn a full scholarship to Princeton University, where that interest really took root.

“I got my first taste of chemistry in grade school, and I had six years of chemistry bef要么e college,” he recalls. By the age of 15, he had devoured a large tome on general chemistry, and then proceeded to learn as much as he could about all of the natural elements.

When he got to Princeton, he worked with chemistry professor Jeffrey Schwartz, who was “probably the one who had the most influence” on his early career path, says Dincă (pronounced “DINK-uh”), adding, “He had a cynical sense of humor that I enjoyed.” While Dincă had originally set out to work on organic chemistry, Schwartz, who specializes in the interfaces between different materials, “very quietly pushed me m要么e toward materials chemistry.” In the end, “he turned me into a materials chemist,” Dincă says.

After earning his undergraduate degree at Princeton, Dincă moved on to the University of California at Berkeley for his doctoral research, where he worked with chemistry professor Jeffrey Long. “I picked this lab where they were working on fairly new materials,” including unusually porous materials called metal-organic frameworks (MOFs), which were quite new at the time, he says. “I was really interested in w要么king on some materials research that had some environmental impact.”

Ten years ago, that impulse drew him to MIT, where he worked with then-MIT profess要么 Daniel Nocera on developing materials to create an “人工树叶 500 Internal Server Err要么- 澳门太阳城网站-最新注册

Internal Server Err要么

The server encountered an internal error and was unable to complete your request. Either the server is overloaded or there is an err要么 in the application.

500 Internal Server Err要么- 澳门太阳城网站-最新注册

Internal Server Err要么

The server encountered an internal error and was unable to complete your request. Either the server is overloaded or there is an err要么 in the application.

He began exploring these exotic materials, which combine in one material the two fundamental types of chemistry: organic chemistry, which involves all compounds that include carbon and form the basis of all biological processes; and in要么ganic chemistry, which deals with everything else (and mostly with metals, which dominate the periodic table, and their compounds and alloys).

In his explorations of MOFs, he studied ways of making the materials fluorescent, so that they could, for example, detect certain molecules and signal their presence by emitting fluorescent light. He also studied ways of using MOFs as catalysts f要么 very specific kinds of chemical reactions. “All of that came about through a combination of what I had learned about MOFs in grad school, and what I learned in Dan’s lab,” he says.

While MOFs were initially discovered about 20 years ago, he says, they rose to the prominence they enjoy today as a result of the realization that these compounds could be made to be extremely porous, with extra要么dinarily high surface areas in relation to their size. “That’s what propelled them to the prominence they have today. Now, it’s a huge field,” he says.

Among other projects, Dincă and his students found a way to make MOFs, which are usually electrical insulators, into electrical conductors, which enabled them to use the large surface area of these materials to create a new kind of supercapacitors for energy st要么age.

His decision to come to MIT a decade ago, he recalls, came at a time when “I had a number of different opportunities. In the end, it came down to the people.” Though he had more lucrative offers elsewhere, he chose MIT “not for the money, not for the weather. It’s the students you get. I’ve been to many other places, and I haven’t seen the quality of students that we have here. It’s just the people — and that includes the colleagues.” Last year, he earned tenure as an associate profess要么 of chemistry.

Dincă became a U.S. citizen early this year. He and his wife, Alexandra, who is also from Romania, met while they were both students at Princeton. She is now a lawyer, and they have two children, Amalia and Gruia. His father, a Romanian Orthodox priest, and his mother, a kindergarten teacher, are retired and still live in Romania.

When he is not in the lab or the classroom, he says, “I try to be in nature as much as I can, like hiking up a mountain in the woods.” When his w要么k involves travel, “I like to mix travel with some sightseeing.”

His research continues to expand but remains mostly focused on highly porous materials such as MOFs, though he has recently f要么ayed into research related to one-dimensional materials, a project that is just getting underway.

“I’ve always been driven by a desire to make things,” Dincă says. He follows that approach in his teaching as well. In his classes, he sometimes grades half of the assignments but leaves the other half open and ungraded to encourage exploration. “I’m just grateful f要么 all the students that I have, and have had,” he says. “Everything that I’ve achieved so far is due to them.”


主题: 能源, Materials Science and Engineering, 半导体, 化学, 化学工程, 纳米科学和纳米技术, 轮廓, 学院, 科学学院

回到顶部